TweetFollow Us on Twitter

Daze Y
Volume Number:8
Issue Number:1
Column Tag:Lisp Listener

Deriving Miss Daze Y

Deriving the (applicative order) Y combinator in a concrete way via fact

By André van Meulebrouck, Chatsworth, California: Internet: vanMeule@cup.portal.com

“Deriving Miss Daze Y”

“The utmost abstractions are the true weapons with which to control our thought of concrete fact.” - Alfred North Whitehead

This article will seek to derive the (applicative order) Y combinator in a concrete way via fact.

Definition: The Y combinator is a function which, when applied to the abstracted version of a recursive function, is the equivalent of the (original) recursive function. [vanMeule May 1991]

Definition: fact is that pedagogical function of obsessive interest, the factorial function.

Abstracted fact

In [vanMeule May 1991], the Y combinator was motivated by a desire to convert everything into a combinator (a lambda expression which has no free variables). In “combinatorizing” everything we found the following definition in need of abstrac-tion (the process whereby we get rid of free variables by making them bound in an outer lambda expression, then promising to pass in “the right thing” when invoking the outer lambda expression).

(* 1 *)

(define fact
 (lambda (n)
 (if (zero? n)
 1
 (* n (fact (1- n))))))

In the definition of fact above, the variable is a free variable. (Such recursive definitions rely on free variables being resolved in an odd, not-purely-lexical way.) The definition for abstracted-fact looks like the following.

(* 2 *)

(define abstracted-fact
 (lambda (fact)
 (lambda (n)
 (if (zero? n)
 1
 (* n (fact (1- n)))))))

The free variable is gone, but we are not home and dry be-cause we now have to pass in the definition of fact. In fact, we have to have a mechanism that is capable of providing them on demand!

Recursionless fact

In [vanMeule Jun 1991], what is perhaps the simplest trick for getting rid of recursion was shown: passing the would be recursive function as an argument!

(* 3 *)

>>>
(define pass-fact
 (lambda (f n)
 (if (zero? n)
 1
 (* n (f f (1- n))))))
pass-fact
>>> (pass-fact pass-fact 5)
120

Notice what happened to the original definition of fact: it was changed! In abstracted-fact, we did not change the definition at all - we merely wrapped a lambda form around the untampered-with-definition of fact.

Merging facts

What we really want is a way to get rid of recursion without modifying the definition of the function we’re ridding the recursion from. In other words, we want to have the best of the two different approaches: abstracted-fact gets rid of the free variable yet keeps the definition intact; pass-fact seems to have captured a recursive mechanism without using recursion.

Theoretically, it should be possible to start from pass-fact and massage it into two parts; a “recursionless recursion mechanism” (the Y combinator), and abstracted-fact.

To Be or to Let it Be

In the discussion that follows, we will use let, which hasn’t been “properly” introduced yet. So, let’s take a look at let via the following example.

(* 4 *)

(* (+ 3 2)
 (+ 3 2))

The expression (+ 3 2) is being recomputed. Alternatively, we can compute the value of (+ 3 2) once, and hold onto the result via let.

(* 5 *)

(let ((three-plus-two (+ 3 2)))
 (* three-plus-two three-plus-two))

While the main motivation behind let is to avoid recomp-utations, it can be used purely for the sake of readability (i.e. even if the value being leted will only be used once).

Our use of let herein will be purely syntactic sugar for a more (syntactically) cumbersome looking (but semantically equivalent) lambda expression. For instance, our example would look like the following if we were to use lambda instead of let.

(* 6 *)

(lambda (three-plus-two)
 (* three-plus-two three-plus-two))
 (+ 3 2))

[Rees et al. 1986] gives a more rigorous and precise Scheme definition for let.

Getting the facts straight

In the style of [Gabriel 1988], let’s start with pass-fact and try to massage it into what we want.

Since one of the rules of our “minimalist” game [vanMeule Jun 1991] was to stick to combinators and l-calculus, we are compelled to curry (a requirement of l-calculus). Also, since there are cases where currying gains expressive power that we would otherwise have to simulate, it seems natural to curry as the first step.

(* 7 *)

>>>
(define pass-fact
 (lambda (f)
 (lambda (n)
 (if (zero? n)
 1
 (* n ((f f) (1- n)))))))
pass-fact
>>>
((pass-fact pass-fact) 5)
120

Notice how the invocation of the new version of fact is more complicated than the recursive 
version. That can be fixed by tucking the invocation, which passes the function as an argument, 
inside the new definition of fact.

(* 8 *)

>>>
(define fact
 (let ((g (lambda (f)
 (lambda (n)
 (if (zero? n)
 1
 (* n ((f f) (1- n))))))))
 (g g)))
fact
>>>
(fact 5)
120

(Note that we would have looked like the Department of Redundancy Department had we not curried - parameter n would have to be bound twice.)

(* 9 *)

(define redundant-fact
 (lambda (n)
 (let ((g (lambda (f n)
 (if (zero? n)
 1
 (* n (f f (1- n)))))))
 (g g n))))

Recalling that our game plan was to separate out abstracted-fact and Y from pass-fact, it would be interesting to see how close the definitional part of fact (the part that has the if) now is to abstracted-fact.

(* 10 *)

(lambda (n)
 (if (zero? n)
 1
 (* n ( (ff) (1-n)))))

As can be seen above, we’re actually quite close already! If the (f f) part in the box were abstracted out we’d be there!

(* 11 *)

(lambda (F)
 (lambda (n)
 (if (zero? n)
 1
 (* n (F (1- n))))))

(Note: the name of the parameters in the above expression are not significant because there are no free variables in the expression. For instance, parameter F could be renamed to fact or any other name we want other than n.)

After abstracting out the (f f) part and invoking it on the argument it needs, we have the following.

(* 12 *)

>>>
(define fact
 (let ((g (lambda (f)
 (lambda (n)
 ((lambda (func)
 (if (zero? n)
 1
 (* n (func (1- n)))))
 (f f))))))
 (g g)))
fact
>>> (fact 5)
120

(Question for the Überprogrammer: Why couldn’t we do the abstraction and invocation as in the following?)

(* 13 *)

(define dont-try-this-at-home-fact
 (let ((g (lambda (f)
 ((lambda (func)
 (lambda (n)
 (if (zero? n)
 1
 (* n (func (1- n))))))
 (f f)))))
 (g g)))

Now, massage the definitional part of fact some more so that it looks just like abstracted-fact.

(* 14 *)

>>>
(define fact
 (let ((g (lambda (f)
 (lambda (n)
 (((lambda (func)
 (lambda (n)
 (if (zero? n)
 1
 (* n (func (1- n))))))
 (f f))
 n)))))
 (g g)))
fact
>>> (fact 5)
120

Using a gratuitous let, we can pull out the definition of abstracted-fact and name it locally.

(*  15 *)

>>>
(define fact
 (let ((abstracted-fact
 (lambda (f)
 (lambda (n)
 (if (zero? n)
 1
 (* n (f (1- n))))))))
 (let ((g (lambda (f)
 (lambda (n)
 ((abstracted-fact (f f)) n)))))
 (g g))))
fact
>>> (fact 5)
120

Notice that in doing the above, a free variable was introduced into g in the second let. (abstracted-fact is free with respect to g and bound with respect to the outermost let.) We can fix this by abstracting out abstracted-fact from the innermost let.

(*  16 *)

>>>
(define fact
 (let ((abstracted-fact
 (lambda (f)
 (lambda (n)
 (if (zero? n)
 1
 (* n (f (1- n))))))))
 ((lambda (abstracted-function)
 (let ((g (lambda (f)
 (lambda (n)
 ((abstracted-function (f f)) n)))))
 (g g)))
 abstracted-fact)))
fact
>>> (fact 5)
120

Y is now ready to leave the nest and flY!

Notice that the last tweak to fact achieved our aim: we now have abstracted-fact totally separated out from the recursionless recursion mechanism.

We can now name the recursion mechanism and make it a function in its own right.

(*  17 *)

>>>
(define y
 (lambda (abstracted-function)
 (let ((g (lambda (f)
 (lambda (arg)
 ((abstracted-function (f f)) arg)))))
 (g g))))
y

Question: Is Y a general purpose recursion removal function? (i.e., will it remove the recursion in any arbitrary function?) Herein, I will simply claim that it is and refer the reader to [Gabriel 1988] and/or any of the many other references that address this question (some of which are are listed in [vanMeule May 1991, Jun 1991]).

Now that we’ve got Y, we can clean up the definition of fact.

(*  18 *)

>>>
(define fact
 (let ((abstracted-fact
 (lambda (f)
 (lambda (n)
 (if (zero? n)
 1
 (* n (f (1- n))))))))
 (y abstracted-fact)))
fact
>>> (fact 5)
120

We can clean up further by getting rid of the gratuitous let.

(* 19 *)

>>>
(define fact
 (y (lambda (f)
 (lambda (n)
 (if (zero? n)
 1
 (* n (f (1- n))))))))
fact
>>> (fact 5)
120

Looking ahead

There’s a type of recursion that our (applicative order) version of Y is not designed to handle. Consider the following functions.

!codeexamplestart!

(* 20 *)

>>>
(define my-even?
 (lambda (n)
 (if (zero? n)
 #t
 (my-odd? (1- n)))))
my-even?
>>>
(define my-odd?
 (lambda (n)
 (if (zero? n)
 #f
 (my-even? (1- n)))))
my-odd?
>>> (my-odd? 5)
#t
>>> (my-even? 5)
#f

These functions need to know about each other: they are mutually recursive.

We can handle this problem by coming up with a new version of Y (let’s call it Y2). Y wants one function as an argument. What happens if instead of a function, a list of functions is passed in? Such a list could contain all the functions which need to have (mutual) knowledge of each other. Accessing the different functions can then be done by using list accessing primitives. (This is the approach used to resolve the problem in l-calculus.)

Exercise for the Überprogrammer: Derive Y2. Hint for a possible game plan: starting with my-even? and my-odd? expressed via a letrec, get rid of the letrec by converting to a let and making use of a dynamic list. Then, thrash out Y2 in a similar manner as was done for Y in this article. Does Y2 turn out to be the same as Y?

Question for the Überprogrammer: if evaluation were normal order rather than applicative order, could we use the same version of Y for mutually recursive functions that we used for “regular” recursive functions (thus making a Y2 function unnecessary)?

Another question: Let’s say we have 3 or more functions which are mutually recursive. What do we need to handle this situation when evaluation is applicative order? What about in normal order?

Note: [vanMeule Jun 1991] gave enough primitives to create dynamic lists. For example, the combinator equivalent of the Scheme expression: (list ’a ’b ’c) could be built like this:

(* 21 *)

(com-cons ’a (com-cons ’b (com-cons ’c com-nil))) ,

and this same idea could be used in conjuring up a combinator version of Scheme’s list function, which could be called com-list.

“Thanks” to:

The hummingbird nest in a nearby tree which afforded much enjoyment in watching two new pilots grow up and get their wings. Bugs/infelicities due to Spring in the air.

Bibliography and References

[Gabriel 1988] Richard P. Gabriel. "The Why of Y." LISP Pointers, vol. 2, no. 2 October/November/December, 1988.

[Rees et al. 1986] Jonathan Rees and William Clinger (editors). Revised3 Report on the Algorithmic Language Scheme; AI Memo 848a. MIT Artificial Intelligence Laboratory, Cambridge, Massachusetts, USA, September 1986.

[vanMuele May 1991] André van Meulebrouck. "A Calculus for the Algebraic-like Manipulation of Computer Code" (Lambda Calculus). MacTutor, May 1991.

[vanMuele Jun 1991] André van Meulebrouck. "Going Back to Church" (Church numerals). MacTutor, June 1991.

All examples in this article were implemented in MacScheme.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

The secrets of Penacony might soon come...
Version 2.2 of Honkai: Star Rail is on the horizon and brings the culmination of the Penacony adventure after quite the escalation in the latest story quests. To help you through this new expansion is the introduction of two powerful new... | Read more »
The Legend of Heroes: Trails of Cold Ste...
I adore game series that have connecting lore and stories, which of course means the Legend of Heroes is very dear to me, Trails lore has been building for two decades. Excitedly, the next stage is upon us as Userjoy has announced the upcoming... | Read more »
Go from lowly lizard to wicked Wyvern in...
Do you like questing, and do you like dragons? If not then boy is this not the announcement for you, as Loongcheer Game has unveiled Quest Dragon: Idle Mobile Game. Yes, it is amazing Square Enix hasn’t sued them for copyright infringement, but... | Read more »
Aether Gazer unveils Chapter 16 of its m...
After a bit of maintenance, Aether Gazer has released Chapter 16 of its main storyline, titled Night Parade of the Beasts. This big update brings a new character, a special outfit, some special limited-time events, and, of course, an engaging... | Read more »
Challenge those pesky wyverns to a dance...
After recently having you do battle against your foes by wildly flailing Hello Kitty and friends at them, GungHo Online has whipped out another surprising collaboration for Puzzle & Dragons. It is now time to beat your opponents by cha-cha... | Read more »
Pack a magnifying glass and practice you...
Somehow it has already been a year since Torchlight: Infinite launched, and XD Games is celebrating by blending in what sounds like a truly fantastic new update. Fans of Cthulhu rejoice, as Whispering Mist brings some horror elements, and tests... | Read more »
Summon your guild and prepare for war in...
Netmarble is making some pretty big moves with their latest update for Seven Knights Idle Adventure, with a bunch of interesting additions. Two new heroes enter the battle, there are events and bosses abound, and perhaps most interesting, a huge... | Read more »
Make the passage of time your plaything...
While some of us are still waiting for a chance to get our hands on Ash Prime - yes, don’t remind me I could currently buy him this month I’m barely hanging on - Digital Extremes has announced its next anticipated Prime Form for Warframe. Starting... | Read more »
If you can find it and fit through the d...
The holy trinity of amazing company names have come together, to release their equally amazing and adorable mobile game, Hamster Inn. Published by HyperBeard Games, and co-developed by Mum Not Proud and Little Sasquatch Studios, it's time to... | Read more »
Amikin Survival opens for pre-orders on...
Join me on the wonderful trip down the inspiration rabbit hole; much as Palworld seemingly “borrowed” many aspects from the hit Pokemon franchise, it is time for the heavily armed animal survival to also spawn some illegitimate children as Helio... | Read more »

Price Scanner via MacPrices.net

Apple Magic Keyboards for iPads are on sale f...
Amazon has Apple Magic Keyboards for iPads on sale today for up to $70 off MSRP, shipping included: – Magic Keyboard for 10th-generation Apple iPad: $199, save $50 – Magic Keyboard for 11″ iPad Pro/... Read more
Apple’s 13-inch M2 MacBook Airs return to rec...
Apple retailers have 13″ MacBook Airs with M2 CPUs in stock and on sale this weekend starting at only $849 in Space Gray, Silver, Starlight, and Midnight colors. These are the lowest prices currently... Read more
Best Buy is clearing out iPad Airs for up to...
In advance of next week’s probably release of new and updated iPad Airs, Best Buy has 10.9″ M1 WiFi iPad Airs on record-low sale prices for up to $200 off Apple’s MSRP, starting at $399. Sale prices... Read more
Every version of Apple Pencil is on sale toda...
Best Buy has all Apple Pencils on sale today for $79, ranging up to 39% off MSRP for some models. Sale prices for online orders only, in-store prices may vary. Order online and choose free shipping... Read more
Sunday Sale: Apple Studio Display with Standa...
Amazon has the standard-glass Apple Studio Display on sale for $300 off MSRP for a limited time. Shipping is free: – Studio Display (Standard glass): $1299.97 $300 off MSRP For the latest prices and... Read more
Apple is offering significant discounts on 16...
Apple has a full line of 16″ M3 Pro and M3 Max MacBook Pros available, Certified Refurbished, starting at $2119 and ranging up to $600 off MSRP. Each model features a new outer case, shipping is free... Read more
Apple HomePods on sale for $30-$50 off MSRP t...
Best Buy is offering a $30-$50 discount on Apple HomePods this weekend on their online store. The HomePod mini is on sale for $69.99, $30 off MSRP, while Best Buy has the full-size HomePod on sale... Read more
Limited-time sale: 13-inch M3 MacBook Airs fo...
Amazon has the base 13″ M3 MacBook Air (8GB/256GB) in stock and on sale for a limited time for $989 shipped. That’s $110 off MSRP, and it’s the lowest price we’ve seen so far for an M3-powered... Read more
13-inch M2 MacBook Airs in stock today at App...
Apple has 13″ M2 MacBook Airs available for only $849 today in their Certified Refurbished store. These are the cheapest M2-powered MacBooks for sale at Apple. Apple’s one-year warranty is included,... Read more
New today at Apple: Series 9 Watches availabl...
Apple is now offering Certified Refurbished Apple Watch Series 9 models on their online store for up to $80 off MSRP, starting at $339. Each Watch includes Apple’s standard one-year warranty, a new... Read more

Jobs Board

Licensed Practical Nurse - Womens Imaging *A...
Licensed Practical Nurse - Womens Imaging Apple Hill - PRN Location: York Hospital, York, PA Schedule: PRN/Per Diem Sign-On Bonus Eligible Remote/Hybrid Regular Read more
DMR Technician - *Apple* /iOS Systems - Haml...
…relevant point-of-need technology self-help aids are available as appropriate. ** Apple Systems Administration** **:** Develops solutions for supporting, deploying, Read more
Operating Room Assistant - *Apple* Hill Sur...
Operating Room Assistant - Apple Hill Surgical Center - Day Location: WellSpan Health, York, PA Schedule: Full Time Sign-On Bonus Eligible Remote/Hybrid Regular Read more
Solutions Engineer - *Apple* - SHI (United...
**Job Summary** An Apple Solution Engineer's primary role is tosupport SHI customers in their efforts to select, deploy, and manage Apple operating systems and Read more
DMR Technician - *Apple* /iOS Systems - Haml...
…relevant point-of-need technology self-help aids are available as appropriate. ** Apple Systems Administration** **:** Develops solutions for supporting, deploying, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.